Tạo bởi Sal Khan. Xem bài tiếp theo: Bạn đã bỏ lỡ bài học trước? Xem tại đây: Tài chính và thị trường vốn trên Khan Academy: Lãi suất là cơ sở của thị trường vốn hiện đại. Tùy thuộc vào việc bạn đang cho vay hay đi vay, nó có thể được xem như là lợi tức của một tài sản (cho vay) hoặc chi phí vốn (đi vay). Hướng dẫn này giới thiệu về khái niệm cơ bản này, bao gồm ý nghĩa của nó đối với kết hợp. Nó cũng đưa ra một quy tắc ngón tay cái có thể giúp bạn dễ dàng thực hiện một số phép tính lãi thô trong đầu. Giới thiệu về Học viện Khan: Học viện Khan cung cấp các bài tập thực hành, video hướng dẫn và bảng điều khiển học tập được cá nhân hóa cho phép người học tự học theo tốc độ của họ trong và ngoài lớp học. Chúng tôi giải quyết toán học, khoa học, lập trình máy tính, lịch sử, lịch sử nghệ thuật, kinh tế học, v.v. Nhiệm vụ toán học của chúng tôi hướng dẫn người học từ mẫu giáo đến giải tích bằng cách sử dụng công nghệ hiện đại, thích ứng để xác định điểm mạnh và khoảng cách học tập. Chúng tôi cũng đã hợp tác với các tổ chức như NASA, Bảo tàng Nghệ thuật Hiện đại, Học viện Khoa học California và MIT để cung cấp nội dung chuyên biệt. Miễn phí. Danh cho tât cả. Mãi mãi. #YouCanLearnAnything Đăng ký kênh Tài chính và Thị trường vốn của Khan Academy: Đăng ký Khan Academy:
Table of Contents
Images related to the topic c squared financial

Introduction to the Black-Scholes formula | Finance & Capital Markets | Khan Academy
Search related to the topic Introduction to the Black-Scholes formula | Finance & Capital Markets | Khan Academy
#Introduction #BlackScholes #formula #Finance #amp #Capital #Markets #Khan #Academy
Introduction to the Black-Scholes formula | Finance & Capital Markets | Khan Academy
c squared financial
See all the latest ways to make money online: See more here
See all the latest ways to make money online: See more here
Best video on BSM.
Can you derive mathematically d1? Thank you! Or do you know where to find a derivation of d1? I mean why is it equal d2 Plus stand. Deviation and squared time until expiration
Please do the whole series😭
My professor don't teach me anything
I am all dependent on you😭
Thank you so much. you are a awesome teacher.
Excellent explanation
Anyone know how to get volatility for non-public start-ups or is there a different valuation method to calculate stock-option expense for start-up?
Thank you soooo much!! you explain it very clear and very easy to understand. Even if I do not have a strong math background, I can still understand it. which is very helpful for my CMA study. I was trying a long time to find a good explanation online until I found you !!
A phenomenal lesson I’ve been watching this lesson overtime in my studies, and as I revisited, Always understand a little more. I have immense respect for Khan Academy and the work you guys do, really help me a lot. My humble contribution to this, 's in time 9:09, when you said that an increase in sigma (historical volatility), makes D1 go up and D2 down in value, which it's not quite accurate, I'm certain it's because you speaking in rough terms to be easier to understand.
As my understanding goes, an increase in volatility (sigma) makes BOTH D1 and D2 increase in value, but the ratio of this increase in D1 is greater. Which makes the difference, between them, and their fore between N(D1) and N(D2) greater. And that's why an increase in volatility alone makes the premium of a call option, as the example, have an increase in value. More specifically Extrinsic value. The outcome in the premium it's the same, but I humbly believe that's this's more the case in that situation.
Sorry for the bad English, I'm a foreigner and I love the videos. You guys should do a deep math course on Black and Scholes, I'm certain it's gonna be great! Best Wishes!
Is there any Brazilians here?
Sal, you ROCK!!! So thankful for this explanation and overview. Really appreciate bringing Black-Scholes back to practical use. Probably the best explanation on the web. No, make that in the entire world!
This is way to easy. Please fix
I'm such an idiot. I thought it said the Back to School formula XD 🤦♀️ (low key clicked because of that) 🙃
Hands off my uni lecturer is the worst, this simple 10 minutes saved my life
Who is this guy? How does he know all this stuff?
I did this in college, 43 years ago with select stocks in S&P 500. The problem with it is that the distribution of risk is not representative to reality, it’s only an attempt or approximation. For example a standard dev. gives equal weights to up and downside.
Thank you so much for this. I have immense respect for Khan Academy and the work you guys do. It's quality and life-changing.
Thank you!
I want to Algebraic Isolate the Stock Price from the Black Scholes formula.
I have not been successful yet. Is there a way?
great post
That was the best nights sleep I've had in a long time! Thank you!!!
i thought beta was volatility
Sal Khan is a national treasure.
I guess it should also be mentioned that Merton and Scholes went on to create a hedge fund (LTCM) which almost melted down the economy and was bailed out by tax payer money to avoid a contagion to the overall economy that would have been in the order of trillions of USDs. The math might have been elegant, but risk pricing (the actual reason why they have received the nobel prize) was not really the thing these gentlemen were good at ironically.
Very well explained. I finally understood the logic with the help of your video. Thank you for making it so simple.
Can the N(d1) and the N(d2) be replaced with just the formulas for d1 and d2?
I'm just curious, but is anyone a high school student like me just learning about options during there free time? lmao
It's clearly explained! Thanks :).
Great, thank you ! ! ! 🙂 🙂 🙂
So simple and clear. Thanks Sal
Thank you so much! I'm preparing for my CFA level 2 and was stuck on the black-sholes model. You saved me so much time of head-scratching!
Wow thank you I intuitively understand the formula now
How to calculate N(d1)? if we have for example d1=-0,22
d2 is wrong there
This is by far the easiest way to explain the B&S formula ! Thank you so much for this instructive video !
Great explanation thank you so much
S1 displays serial correlation
Thank you so much
is there also a formula like this for american options?
There's no 'Nobel Prize' in economics. They did not win a Nobel price. They won a 'Nobel Memorial Prize'.
from where would i derive the risk free interest rate or the SD?